51 research outputs found

    Observation of Faraday rotation from a single confined spin

    Get PDF
    Ability to read-out the state of a single confined spin lies at the heart of solid-state quantum information processing. While all-optical spin measurements using Faraday rotation has been successfully implemented in ensembles of semiconductor spins, read-out of a single semiconductor spin has only been achieved using transport measurements based on spin-charge conversion. Here, we demonstrate an all-optical dispersive measurement of the spin-state of a single electron trapped in a semiconductor quantum dot. We obtain information on the spin state through conditional Faraday rotation of a spectrally detuned optical field, induced by the polarization- and spin-selective trion (charged quantum dot) transitions. To assess the sensitivity of the technique, we use an independent resonant laser for spin-state preparation. An all-optical dispersive measurement on single spins has the important advantage of channeling the measurement back-action onto a conjugate observable, thereby allowing for repetitive or continuous quantum nondemolition (QND) read-out of the spin-state. We infer from our results that there are of order unity back-action induced spin-flip Raman scattering events within our measurement timescale. Therefore, straightforward improvements such as the use of a solid-immersion lens and higher efficiency detectors would allow for back-action evading spin measurements, without the need for a cavity

    Quantum control of proximal spins using nanoscale magnetic resonance imaging

    Full text link
    Quantum control of individual spins in condensed matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation, and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual spin control to nanoscale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual spin control can be achieved with few-nm resolution for proximal electron spins by performing single-spin magnetic resonance imaging (MRI), which is realized via a scanning magnetic field gradient that is both strong enough to achieve nanometric spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and achieve nanometric resolution in imaging, characterization, and manipulation of individual spins. For NV centers, our results in individual spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution compared to conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement, and nanoscale magnetometry.Comment: 7 pages, 4 figure

    Demonstration of entanglement-by-measurement of solid state qubits

    Full text link
    Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between qubits and therefore provide a unique resource for quantum information processing with well-isolated qubits. Numerous schemes for entanglement-by-measurement of solid-state qubits have been proposed, but the demanding experimental requirements have so far hindered implementations. Here we realize a two-qubit parity measurement on nuclear spins in diamond by exploiting the electron spin of a nitrogen-vacancy center as readout ancilla. The measurement enables us to project the initially uncorrelated nuclear spins into maximally entangled states. By combining this entanglement with high-fidelity single-shot readout we demonstrate the first violation of Bells inequality with solid-state spins. These results open the door to a new class of experiments in which projective measurements are used to create, protect and manipulate entanglement between solid-state qubits.Comment: 6 pages, 4 figure

    Sensing remote nuclear spins

    Full text link
    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures

    Driven coherent oscillations of a single electron spin in a quantum dot

    Full text link
    The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary materia

    Coherent Population Trapping of an Electron Spin in a Single Negatively Charged Quantum Dot

    Full text link
    Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states which are coupled by coherent optical fields to an intermediate state in a three-level atomic system. Recently, CPT has been observed in an ensemble of donor bound spins in GaAs and in single nitrogen vacancy centers in diamond by using a fluorescence technique. Here we report the demonstration of CPT of an electron spin in a single quantum dot (QD) charged with one electron.Comment: to be appeared in Nature Physic

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference
    corecore